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*1n CRS model, CRS hidden

digest very short compared to | C|

P

dig = Hash(C)

e S

ct <« Enc(dig, x)

Dec(C, ct) = C : |
EW=59 | Security: Server learns nothing more than C(x)

Like FHE: 2-round 2PC where Server does the computational work
But “flipped”: Server learns the output (instead of Client)
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dig = Hash(C)
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Dec(C, ct) = C(x) ct <« Enc(dig, x)

Prior work:
- [Quach-Wee-Wichs’17]: LFE for circuits from LWE

- [Dottling-Gajland-Malavolta'23]: LFE for TMs from 10 + SSB

Problem: Server computation is at least linear in inputs!
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*suppressing poly(4) and
LFE for RAMS
Some fixed RAM program

/ (e.g. universal)
Prep run time: |y ‘1+g Goal: output RAM computation P(x, y)
P(x,y) has RAM runtime T
y

dig = Hash(y)
Dec(7, ct) = P(x, y) m Enc run time: | x| +x ct < Enc(dig, x)

Main Result: We build LFE for RAMs assuming RingLWE

Additionally assuming iO, get Enc run time just | x|

Main challenge: Privately accessing the public database y
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y, sk < GarbleDB(y)

/
ct « GarbleProg(sk, P)

Eval(y, ct) = P(y)
y belongs to client and is garbled

Garbled RAM with respect to their secret key

RAM-LFE

dig = Hash(y)

ct < Enc(dig, x)

ct

Dec(y,ct) = P(x, y)

T~ Need to evaluate over public
database y
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@

ORAM — Private database, requires client secret key

DEPIR — Public database, public deterministic preprocessing

Y l
N !
y := DEPIR . Prep(y) /// \\) 5171

% \ I, 7 < DEPIR. Query(i)
| | \(i] = DEPIR . DecGiI/1,

Prior Work: [Lin-M-Wichs'23] build DEPIR from RingLWE

y, sk < ORAM . Init(y)
g < ORAM . Read(sk, 1)
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We follow the general template for constructing Garbled RAM
For LFE: Crucially

1. Construct “UMA” secure version

need UMA version to
allow public database

- Security only protects internal state not the
memory access pattern

2. Upgrade to full security
- Protect access pattern with ORAM + DEPIR
3. For strong efficiency: Use iO to obfuscate ;| Requires careful

the client’s encryption procedure and offload TTargument and special
to server | ORAM construction
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RAM-NISC from [Cho-Dottling-Garg-Gupta-Miao-Polychroniadou’17]
Building blocks: Laconic Oblivious Transfer + Garbled circuits

LOT ensures that only the
Garbled step circuit label for y|i] is revealed
Hardcoded: LOT digest of y LOT.Send for wire (and not 1 — y[i])
corresponding to y|
e —_—

CPU
Step circuit Y

LOT digest can be computed for
public !
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CPU locations Preprocessing
. Recover y|i] — |y
with DEPIR.Dec
under garbling
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Additional Results

Result: We build (multi-key) functional encryption for RAMs
- Each secret key associated to large database y

- Decryption recovers P(x, y) in sublinear timein x|, | V]
Assumptions: FE for circuits + RingLWE

Prior work: [ACFQ’22] only allows short secret keys

Result: \We build 1O for RAMs
- Given (P, y), obfuscate the program P( - , y)

- Evaluation can be sublinear in ||
Assumptions: IO for circuits + RingLWE

Prior work: [BCGHJLPTV'18] doesn't allow sublinear runtime




Thank you!

eprint: 2024/068



