Laconic Function Evaluation,
Functional Encryption and Obfuscation
for RAMs with Sublinear Computation

Fangqi Dong Zihan Hao Ethan Mook Daniel Wichs
I1IS, Tsinghua I1IS, Tsinghua Northeastern Northeastern
University University University University

&
NTT Research

Eurocrypt 2024

Laconic Function Evaluation (LFE)

Laconic Function Evaluation (LFE)

&

Laconic Function Evaluation (LFE)

Laconic Function Evaluation (LFE)

*1n CRS model, CRS hidden

dig = Hash(C)

=== @

Laconic Function Evaluation (LFE)

*1n CRS model, CRS hidden

digest very short compared to | C|

P

dig = Hash(C)

T A

Laconic Function Evaluation (LFE)

*1n CRS model, CRS hidden

digest very short compared to | C|

P

dig = Hash(C)

T A

ct <« Enc(dig, x)

Laconic Function Evaluation (LFE)

*1n CRS model, CRS hidden

digest very short compared to | C|

P

dig = Hash(C)

T O

ct <« Enc(dig, x)

Dec(C, ct) = C(x)

Laconic Function Evaluation (LFE)

*1n CRS model, CRS hidden

digest very short compared to | C|

P

dig = Hash(C)

T O

ct <« Enc(dig, x)

Dec(C, ct) = C : |
EW=59 | Security: Server learns nothing more than C(x)

Laconic Function Evaluation (LFE)

*1n CRS model, CRS hidden

digest very short compared to | C|

P

dig = Hash(C)

e S

ct <« Enc(dig, x)

Dec(C, ct) = C : |
EW=59 | Security: Server learns nothing more than C(x)

Like FHE: 2-round 2PC where Server does the computational work

Laconic Function Evaluation (LFE)

*1n CRS model, CRS hidden

digest very short compared to | C|

P

dig = Hash(C)

e S

ct <« Enc(dig, x)

Dec(C, ct) = C : |
EW=59 | Security: Server learns nothing more than C(x)

Like FHE: 2-round 2PC where Server does the computational work
But “flipped”: Server learns the output (instead of Client)

Laconic Function Evaluation (LFE)

. ig = Has i

Dec(C, ct) = C(x) ct <« Enc(dig, x)

Laconic Function Evaluation (LFE)

C Iig = Has

Dec(C, ct) = C(x) ct <« Enc(dig, x)

Prior work:
- [Quach-Wee-Wichs’17]: LFE for circuits from LWE

Laconic Function Evaluation (LFE)

C

X
— dig = Hash(C)
2) — G2\
, ct " ~
Dec(C, ct) = C(x) ct <« Enc(dig, x)

Prior work:
- [Quach-Wee-Wichs’17]: LFE for circuits from LWE

- [Dottling-Gajland-Malavolta'23]: LFE for TMs from 10 + SSB

Laconic Function Evaluation (LFE)

C X
dig = Hash(C)

@ — .

Dec(C, ct) = C(x) ct <« Enc(dig, x)

Prior work:
- [Quach-Wee-Wichs’17]: LFE for circuits from LWE

- [Dottling-Gajland-Malavolta'23]: LFE for TMs from 10 + SSB

Problem: Server computation is at least linear in inputs!

LFE for RAMs

Main Result: We build LFE for RAMs assuming RingLWE

LFE for RAMs

Goal: output RAM computation P(x, y)

Main Result: We build LFE for RAMs assuming RingLWE

L F E fO r RAM S Some fixed RAM program

/ (e.g. universal)

Goal: output RAM computation P(x, y)
Main Result: We build LFE for RAMs assuming RingLWE

L F E fO r RAM S Some fixed RAM program

/ (e.g. universal)

Goal: output RAM computation P(x, y)
P(x, y) has RAM runtime T
Main Result: We build LFE for RAMs assuming RingLWE

L F E fO r RAM S Some fixed RAM program

/ (e.g. universal)

Goal: output RAM computation P(x, y)
P(x, y) has RAM runtime T
Prep -

Y — X

Main Result: We build LFE for RAMs assuming RingLWE

LFE for RAMs

Some fixed RAM program

/ (e.g. universal)

Goal: output RAM computation P(x, y)
P(x, y) has RAM runtime T
Prep -

Y — X

= dig = Hash(y)
Main Result: We build LFE for RAMs assuming RingLWE

L F E fO r RAM S Some fixed RAM program

/ (e.g. universal)

Goal: output RAM computation P(x, y)
7z

P(x, y) has RAM runtime T
ct < Enc(dig, x)

Main Result: We build LFE for RAMs assuming RingLWE

dig = Hash(y)
—>

ct

L F E fO r RAM S Some fixed RAM program

/ (e.g. universal)

Goal: output RAM computation P(x, y)
P(x, y) has RAM runtime T

dig = Hash(y)
—>

ct

Dec(y,ct) = P(x,y) ct < Enc(dig, x)

Main Result: We build LFE for RAMs assuming RingLWE

e LFE for RAMs

Some fixed RAM program

/ (e.g. universal)

Goal: output RAM computation P(x, y)
P(x, y) has RAM runtime T

dig = Hash(y)

_—

ct

Dec(y,ct) = P(x, y) ct < Enc(dig, x)
Main Result: We build LFE for RAMs assuming RingLWE

*suppressing poly(4) and
LFE for RAMS
Some fixed RAM program

/ (e.g. universal)
Prep run time: |y ‘1+e Goal: output RAM computation P(x, y)
P(x, y) has RAM runtime T
Y

dig = Hash(y)
—>

ct

Dec(y,ct) = P(x, y) ct < Enc(dig, x)
Main Result: We build LFE for RAMs assuming RingLWE

*suppressing poly(4) and
LFE for RAMS
Some fixed RAM program

/ (e.g. universal)
Prep run time: |y ‘1+e Goal: output RAM computation P(x, y)
P(x, y) has RAM runtime T
Y

dig = Hash(y)
—>

ct

Main Result: We build LFE for RAMs assuming RingLWE

e LFE for RAMs

Some fixed RAM program

/ (e.g. universal)
Prep run time: |y ‘1+e Goal: output RAM computation P(x, y)
P(x, y) has RAM runtime T
Y

dig = Hash(y)
—>

ct

Dec(y, ct) = P(x,y) Enc run time: | x| +X| ct < Enc(dig, x)

Main Result: We build LFE for RAMs assuming RingLWE

Additionally assuming iO, get Enc run time just | x|

*suppressing poly(4) and
LFE for RAMS
Some fixed RAM program

/ (e.g. universal)
Prep run time: |y ‘1+g Goal: output RAM computation P(x, y)
P(x,y) has RAM runtime T
y

dig = Hash(y)
Dec(7, ct) = P(x, y) m Enc run time: | x| +x ct < Enc(dig, x)

Main Result: We build LFE for RAMs assuming RingLWE

Additionally assuming iO, get Enc run time just | x|

Main challenge: Privately accessing the public database y

RAM-LFE vs Garbled RAM

Garbled RAM

RAM-LFE

Y

@

RAM-LFE vs Garbled RAM

/ \Q y, sk < GarbleDB(y)
Garbled RAM

RAM-LFE ,

@

y, sk < GarbleDB(y)

RAM-LFE vs Garbled RAM
) — /

Garbled RAM with respect to their secret key

RAM-LFE

Y

@

RAM-LFE vs Garbled RAM

- /

y belongs to client and is garbled

Garbled RAM with respect to their secret key

RAM-LFE

y, sk < GarbleDB(y)

/
ct « GarbleProg(sk, P)

Y

@

RAM-LFE vs Garbled RAM

- /

y belongs to client and is garbled

Garbled RAM with respect to their secret key

RAM-LFE

y, sk < GarbleDB(y)

/
ct « GarbleProg(sk, P)

Y

@

RAM-LFE vs Garbled RAM

//7// \\) y % \Q y/,sk < GarbleDB(y)
4+ ' / ct « GarbleProg(sk, P)

y belongs to client and is garbled

Garbled RAM with respect to their secret key

/ \~ ot < Enc(dig,)

dig = Hash(y)

)

RAM-LFE vs Garbled RAM

y, sk < GarbleDB(y)

/
ct « GarbleProg(sk, P)

Eval(y, ct) = P(y)
y belongs to client and is garbled

Garbled RAM with respect to their secret key

RAM-LFE

dig = Hash(y)

ct < Enc(dig, x)

ct

Dec(y,ct) = P(x, y)

RAM-LFE vs Garbled RAM

y, sk < GarbleDB(y)

/
ct « GarbleProg(sk, P)

Eval(y, ct) = P(y)
y belongs to client and is garbled

Garbled RAM with respect to their secret key

RAM-LFE

dig = Hash(y)

ct < Enc(dig, x)

ct

Dec(y,ct) = P(x, y)

T~ Need to evaluate over public
database y

DEPIR vs ORAM
@

Y

f \~ %, sk < ORAM . Init(y)

DEPIR vs ORA

Y

f \ 9, sk < ORAM . Init(y)
,' * g — ORAM . Read(sk, i)

DEPIR vs ORA

DEPIR vs ORA

Y

y, sk <~ ORAM . Init(y)
g < ORAM . Read(sk, i)

ORAM
DEPIR |
l
d 4 I,r « DEPIR. '
y := DEPIR . Prep(y) / \Q\ T Query(i)
yli]) y[i] = DEPIR . Dec(3[1], r)

DEPIR vs ORA

Y

y, sk « ORAM. Init(y)
qg < ORAM . Read(sk, i)

ORAM — Private database, requires client secret key

DEPIR

l

f \ I, 7 < DEPIR. Query(i)
| | \(i] = DEPIR . DecGiI/1,

y := DEPIR . Prep(y) 3
yl]

DEPIR vs ORA

Y

y, sk « ORAM. Init(y)
qg < ORAM . Read(sk, i)

ORAM — Private database, requires client secret key

DEPIR — Public database, public deterministic preprocessing
j

5 = DEPIR . Prep(y) //7// \\) ! f \Q\ I, r < DEPIR. Query(i)
| | | S " J[i] = DEPIR . Dec(5[71.)

DEPIR vs ORA
@

ORAM — Private database, requires client secret key

DEPIR — Public database, public deterministic preprocessing

Y l
N !
y := DEPIR . Prep(y) /// \\) 5171

% \ I, 7 < DEPIR. Query(i)
| | \(i] = DEPIR . DecGiI/1,

Prior Work: [Lin-M-Wichs'23] build DEPIR from RingLWE

y, sk < ORAM . Init(y)
g < ORAM . Read(sk, 1)

Construction template

We follow the general template for constructing Garbled RAM

Construction template

We follow the general template for constructing Garbled RAM

1. Construct “UMA” secure version

- Security only protects internal state not the
memory access pattern

Construction template

We follow the general template for constructing Garbled RAM

1. Construct “UMA" secure version For LFE: Crucially

- Security only protects internal state not the +—+need UMA version to
memory access pattern allow public database

Construction template

We follow the general template for constructing Garbled RAM

For LFE: Crucially
need UMA version to

1. Construct “UMA” secure version

- Security only protects internal state not the
memory access pattern

2. Upgrade to full security
- Protect access pattern with ORAM + DEPIR

allow public database

Construction template

We follow the general template for constructing Garbled RAM
For LFE: Crucially

1. Construct “UMA” secure version

need UMA version to
allow public database

- Security only protects internal state not the
memory access pattern

2. Upgrade to full security
- Protect access pattern with ORAM + DEPIR

3 For strong efficiency: Use 10 to obfuscate

the client's encryption procedure and offload
to server

Construction template

We follow the general template for constructing Garbled RAM
For LFE: Crucially

1. Construct “UMA” secure version

need UMA version to
allow public database

- Security only protects internal state not the
memory access pattern

2. Upgrade to full security
- Protect access pattern with ORAM + DEPIR
3. For strong efficiency: Use iO to obfuscate ;| Requires careful

the client’s encryption procedure and offload TTargument and special
to server | ORAM construction

UMA secure RAM-LFE

RAM-NISC from [Cho-Dottling-Garg-Gupta-Miao-Polychroniadou’17]
Building blocks: Laconic Oblivious Transfer + Garbled circuits

RAM program P

CPU
y

UMA secure RAM-LFE

RAM-NISC from [Cho-Dottling-Garg-Gupta-Miao-Polychroniadou’17]
Building blocks: Laconic Oblivious Transfer + Garbled circuits

RAM program P

read location 1
CPU
Step circuit Y

UMA secure RAM-LFE

RAM-NISC from [Cho-Dottling-Garg-Gupta-Miao-Polychroniadou’17]
Building blocks: Laconic Oblivious Transfer + Garbled circuits

RAM program P

read location 1
CPU ,
Step circuit internal state st y

UMA secure RAM-LFE

RAM-NISC from [Cho-Dottling-Garg-Gupta-Miao-Polychroniadou’17]
Building blocks: Laconic Oblivious Transfer + Garbled circuits

RAM program P

read location 1
CPU |
i st Step circuit internal state st y

UMA secure RAM-LFE

RAM-NISC from [Cho-Dottling-Garg-Gupta-Miao-Polychroniadou’17]
Building blocks: Laconic Oblivious Transfer + Garbled circuits

-
RAM program P /
read location 1
CPU ,
Step circuit internal state st y

st

UMA secure RAM-LFE

RAM-NISC from [Cho-Dottling-Garg-Gupta-Miao-Polychroniadou’17]
Building blocks: Laconic Oblivious Transfer + Garbled circuits

-
RAM program P /
yli] — read location i
— CPU |
i st = Step circuit internal state st Y

UMA secure RAM-LFE

RAM-NISC from [Cho-Dottling-Garg-Gupta-Miao-Polychroniadou’17]
Building blocks: Laconic Oblivious Transfer + Garbled circuits

yli] — i
CPU
st Step circuit st Y

UMA secure RAM-LFE

RAM-NISC from [Cho-Dottling-Garg-Gupta-Miao-Polychroniadou’17]
Building blocks: Laconic Oblivious Transfer + Garbled circuits

Garbled step circuit

yli] — i
CPU
st Step circuit st Y

UMA secure RAM-LFE

RAM-NISC from [Cho-Dottling-Garg-Gupta-Miao-Polychroniadou’17]
Building blocks: Laconic Oblivious Transfer + Garbled circuits

Garbled step circuit

yli] —
— CPU
st Step circuit Labels for st Y

UMA secure RAM-LFE

RAM-NISC from [Cho-Dottling-Garg-Gupta-Miao-Polychroniadou’17]
Building blocks: Laconic Oblivious Transfer + Garbled circuits

Garbled step circuit

yli] —
— CPU
st Step circuit Labels for st Y

UMA secure RAM-LFE

RAM-NISC from [Cho-Dottling-Garg-Gupta-Miao-Polychroniadou’17]
Building blocks: Laconic Oblivious Transfer + Garbled circuits

Garbled step circuit
Hardcoded: LOT digest of y

yli] — i
CPU
st Step circuit st Labels for st Y

UMA secure RAM-LFE

RAM-NISC from [Cho-Dottling-Garg-Gupta-Miao-Polychroniadou’17]
Building blocks: Laconic Oblivious Transfer + Garbled circuits

4
Garbled step circuit e

Hardcoded: LOT digest of y LOT.Send for wire labels

corresponding to y|i]
—>

yli] — '
CPU
st Step circuit Labels for st Y

UMA secure RAM-LFE

RAM-NISC from [Cho-Dottling-Garg-Gupta-Miao-Polychroniadou’17]
Building blocks: Laconic Oblivious Transfer + Garbled circuits

LOT ensures that only the
Garbled step circuit label for y|i] is revealed
Hardcoded: LOT digest of y LOT.Send for wire (and not 1 — y[i])
corresponding to y|
e —_—

CPU

Step circuit Labels for st Y

UMA secure RAM-LFE

RAM-NISC from [Cho-Dottling-Garg-Gupta-Miao-Polychroniadou’17]
Building blocks: Laconic Oblivious Transfer + Garbled circuits

LOT ensures that only the
Garbled step circuit label for y|i] is revealed
Hardcoded: LOT digest of y LOT.Send for wire (and not 1 — y[i])
corresponding to y|
e —_—
CPU
Step circuit Labels for st Y

Client produces 1 garbled step circuits —
one for each step of P

UMA secure RAM-LFE

RAM-NISC from [Cho-Dottling-Garg-Gupta-Miao-Polychroniadou’17]
Building blocks: Laconic Oblivious Transfer + Garbled circuits

LOT ensures that only the
Garbled step circuit label for y|i] is revealed
Hardcoded: LOT digest of y LOT.Send for wire (and not 1 — y[i])
corresponding to y|
e —_—

CPU
Step circuit Y

LOT digest can be computed for
public !

Full security with DEPIR

+ ORAM for the client’'s database x

Full security with DEPIR

+ ORAM for the client’'s database x

Garbled step circuit

yli] — i
CPU
st Step circuit st Y

Full security with DEPIR

+ ORAM for the client’'s database x

V.
Garbled step circuit
' ' DEPIR
CPU Preprocessmg
Step circuit Y

Full security with DEPIR

+ ORAM for the client’'s database x

V.
Garbled step circuit
Hardcoded: LOT digest of
' ' DEPIR
CPU Preprocessmg
Step circuit Y

Full security with DEPIR

+ ORAM for the client’'s database x

V.
Garbled step circuit
Hardcoded: LOT digest of
' ' DEPIR
CPU Preprocessmg
Step circuit Y

Full security with DEPIR

+ ORAM for the client’'s database x

/
Garbled step circuit 1. Sample DEPIR
Hardcoded: LOT digest of ¥ query to Vil
- ' DEPIR
Preprocessmg
Step circuit Y

Full security with DEPIR

+ ORAM for the client’'s database x

Garbled step circuit
Hardcoded: LOT digest of

. Sample DEPIR
query to y|i]
. LOT.Send wire
labels for query DEPIR
CPU locations Preprocessing
Step circuit Y

Full security with DEPIR

+ ORAM for the client’'s database x

Garbled step circuit
Hardcoded: LOT digest of

. Sample DEPIR

query to y|i]
. LOT.Send wire
labels for query DEPIR
CPU locations Preprocessing
. Recover y|i] — |y
with DEPIR.Dec
under garbling

Step circuit

Strong Efficiency with 10

Strong Efficiency with 10

DEPIR I
GCGenyg; g, (1)

Strong Efficiency with 10

GCGengg (1)

Strong Efficiency with 10

t-th Garbled step circuit . Sample DEPIR
Hardcoded: LOT digest of y query to y[i]
. LOT.Send wire
' ' labels for query DEPIR
CPU locations | Preprocessmg
Step circuit ' Rgcovery u Y
with DEPIR.Dec
under garbling
y

Strong Efficiency with 10

t-th Garbled step circuit . Sample DEPIR
Hardcoded: LOT digest of y query to y[i]
. LOT.Send wire
' ' labels for query DEPIR
CPU locations | Preprocessmg
Step circuit ' Rgcovery u Y
with DEPIR.Dec
under garbling
y

Additional Results

Additional Results

Result: We build (multi-key) functional encryption for RAMs

Additional Results

Result: We build (multi-key) functional encryption for RAMs
- Each secret key associated to large database y

Additional Results

Result: We build (multi-key) functional encryption for RAMs
- Each secret key associated to large database y

- Decryption recovers P(x,y) in sublinear time in | x|, |y]|

Additional Results

Result: We build (multi-key) functional encryption for RAMs
- Each secret key associated to large database y

- Decryption recovers P(x, y) in sublinear timein x|, | V]
Assumptions: FE for circuits + RingLWE

Additional Results

Result: We build (multi-key) functional encryption for RAMs
- Each secret key associated to large database y

- Decryption recovers P(x, y) in sublinear timein x|, | V]
Assumptions: FE for circuits + RingLWE

Prior work: [ACFQ’22] only allows short secret keys

Additional Results

Result: We build (multi-key) functional encryption for RAMs
- Each secret key associated to large database y

- Decryption recovers P(x, y) in sublinear timein x|, | V]
Assumptions: FE for circuits + RingLWE

Prior work: [ACFQ’22] only allows short secret keys

Result: \We build iO for RAMs

Additional Results

Result: We build (multi-key) functional encryption for RAMs
- Each secret key associated to large database y

- Decryption recovers P(x, y) in sublinear timein x|, | V]
Assumptions: FE for circuits + RingLWE

Prior work: [ACFQ’22] only allows short secret keys

Result: \We build 1O for RAMs
- Given (P, y), obfuscate the program P(- , y)

Additional Results

Result: We build (multi-key) functional encryption for RAMs
- Each secret key associated to large database y

- Decryption recovers P(x, y) in sublinear timein x|, | V]
Assumptions: FE for circuits + RingLWE

Prior work: [ACFQ’22] only allows short secret keys

Result: \We build 1O for RAMs
- Given (P, y), obfuscate the program P(- , y)

- Evaluation can be sublinear in ||

Additional Results

Result: We build (multi-key) functional encryption for RAMs
- Each secret key associated to large database y

- Decryption recovers P(x, y) in sublinear timein x|, | V]
Assumptions: FE for circuits + RingLWE

Prior work: [ACFQ’22] only allows short secret keys

Result: \We build 1O for RAMs
- Given (P, y), obfuscate the program P(- , y)

- Evaluation can be sublinear in ||
Assumptions: IO for circuits + RingLWE

Additional Results

Result: We build (multi-key) functional encryption for RAMs
- Each secret key associated to large database y

- Decryption recovers P(x, y) in sublinear timein x|, | V]
Assumptions: FE for circuits + RingLWE

Prior work: [ACFQ’22] only allows short secret keys

Result: \We build 1O for RAMs
- Given (P, y), obfuscate the program P(- , y)

- Evaluation can be sublinear in ||
Assumptions: IO for circuits + RingLWE

Prior work: [BCGHJLPTV'18] doesn't allow sublinear runtime

Thank you!

eprint: 2024/068

