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Motivating Example: Google Search

eye twitch covid symptom?



Private Google Search

hard boiled eggs timebest ice cream greater Bostoneye twitch covid symptom?



Private Google Search

ct = Encsk(query)  

Encsk(response)  

Eval(google_search, ct)

best ice cream greater Bostoneye twitch covid symptom?

Fully Homomorphic Encryption (FHE)
• Privately evaluate arbitrary functions



Private Google Search

Major Caveat: FHE operates in the circuit model - 
can’t make efficient memory access while preserving 
security
⇒ Google needs to read the entire content of the 

internet to answer each encrypted query!

best ice cream greater Bostoneye twitch covid symptom?



Private Google Search

Result: We build FHE in the RAM model

best ice cream greater Bostoneye twitch covid symptom?

• Google preprocesses the Internet content into a 
specialized data structure

• Can answer any future encrypted query efficiently 
by only accessing a few locations! 



Circuit 𝐶 for 𝑓(⋅, 𝑦)

Fully Homomorphic Encryption (FHE)
[Rivest-Adleman-Dertouzos’78,Gentry ‘09,Brakerski-Vaikuntanathan11,…]

𝑥
𝑐𝑡! ← 𝐸𝑛𝑐"# 𝑥

𝑐𝑡∗ = 𝐸𝑣𝑎𝑙(𝐶, 𝑐𝑡!)

𝐷𝑒𝑐"# 𝑐𝑡∗ = 𝐶 𝑥 = 𝑓(𝑥, 𝑦)

𝑠𝑘 ← $

𝑦

Client time/communication 𝑂( 𝑥 + 𝑓 𝑥, 𝑦 )

Server learns nothing about 𝑥

Server eval time is at least 𝐶 > 𝑦



RAM-FHE

𝑥
𝑐𝑡! ← 𝐸𝑛𝑐"#(𝑥)

𝑐𝑡∗ = 𝐸𝑣𝑎𝑙(𝑃, 𝑐𝑡!, 𝑦)
𝑠𝑘 ← $

𝑦
Preprocess

#𝑦

;𝑦	

𝑦

𝐷𝑒𝑐"# 𝑐𝑡∗ = 𝑃 𝑥, 𝑦𝑃(⋅,⋅) : RAM program for 𝑓
with worst-case run-time 𝑇.

Client time/communication 𝑂( 𝑥 + 𝑓 𝑥, 𝑦 )

Server learns nothing about 𝑥

Server eval time is nearly 𝑂(𝑇)

Server preprocessing time is nearly 𝑂( 𝑦 )

(nearly)



RAM-FHE

𝑥
𝑐𝑡! ← 𝐸𝑛𝑐"#(𝑥)

𝑐𝑡∗ = 𝐸𝑣𝑎𝑙(𝑃, 𝑐𝑡!, 𝑦)
𝑠𝑘 ← $

𝑃(⋅,⋅) : RAM program for 𝑓
with worst-case run-time 𝑇.

𝑦
Preprocess

#𝑦

;𝑦	

𝐷𝑒𝑐"# 𝑐𝑡∗ = 𝑃 𝑥, 𝑦

𝑃 gets efficient access to both 𝑥 and 𝑦

Use cases over Circuit-FHE:
• Private query to large public database
• Outsource computation on large private database
• Avoid blowup converting RAM program to circuit

Google search



RAM-FHE: Prior work and Our Result

Result: We build RAM-FHE based on the Ring Learning with 
Errors (RingLWE) assumption (+ circular security)

Prior Work: [Holmgren-Hamlin-Weiss-Wichs ’19] build a weaker 
variant of RAM-FHE based on heuristic use of obfuscation

Main Challenge: Allow efficient database access under FHE 
without revealing the access pattern

- RingLWE is a well studied assumption
- As hard as finding approximate shortest vector in ideal lattices in worst case.
- Basis of new NIST standard for next generation public-key encryption. 

- Alternate constructions: approximate GCD, NTRU, O(1)-Rank Module LWE



Private Information Retrieval (PIR)
[CGKS95,KO00]

DB ∈ 0,1 (

𝑖 ∈ [𝑁]

Goal: Retrieve DB[𝑖]
without revealing	𝑖.

Trivial solution: server sends entire DB.

Using crypto get communication polylog(𝑁)



𝑖 ∈ [𝑁]

Caveat: Server reads entire DB during 
protocol
⇒ Server computation is ≥ 𝑁. 
This is inherent if the server only stores DB.

DB ∈ 0,1 (

Goal: Retrieve DB[𝑖]
without revealing	𝑖.

Private Information Retrieval (PIR)
[CGKS95,KO00]



PIR Lower Bound

𝑖 ∈ [𝑁]

DB ∈ 0,1 (

𝑗

Server learns 𝑖 ≠ 𝑗!

Query(𝑖)  

resp



Doubly Efficient PIR (DEPIR) 
/DB

One-time, offline
preprocessing

DB ∈ 0,1 (

After preprocessing, both communication 
and server computation are small (ideally 
polylog N).

𝑖 ∈ [𝑁]



Prior Work on DEPIR

Prior Work: 
• Originally proposed by [Beimel-Ishai-Malkin ‘00]
• First evidence from [Canetti-Holmgren-Richelson ’17] and [Boyle-Ishai-

Pass-Wootters ’17]: give constructions of keyed DEPIR that rely on a 
new non-standard assumption and heuristic use of obfuscation

)DB, 𝑝𝑘 𝑝𝑘

/DB

)DBDB

𝑖 ∈ [𝑁]



Result: We construct unkeyed DEPIR from the RingLWE assumption
• Server deterministically computes preprocessing on its own
• Later any client can query DB in a 2-Round Protocol

/DB

)DBDB )DB, 𝑝𝑘 𝑝𝑘

)DBDB

𝑖 ∈ [𝑁]

Our Results on DEPIR



Efficiency: For any 𝜖 > 0, database size 𝑁:
-  Preprocessing run-time/size:  𝑂 𝑁'()
- PIR protocol run-time/communication: polylog	𝑁
- Also: Updatable DEPIR – update N𝐷𝐵 in time: 𝑂 𝑁)

Alternatively:
→  𝑁 ⋅ 2*( ,-. /) 	= 𝑁'(1(')

→	2*( ,-. /) 	 = 𝑁1(')

→	2*( ,-. /) 	 = 𝑁1(')

Result: We construct unkeyed DEPIR from the RingLWE assumption
• Server deterministically computes preprocessing on its own
• Later any client can query DB in a 2-Round Protocol

Our Results on DEPIR



DEPIR Template 

Cryptography Algorithms

Simple PIR from Homomorphic Encryption

Preprocessing polynomial evaluation
[Kedlaya-Umans’08]



DEPIR Template 

Cryptography Algorithms

Simple PIR from Somewhat Homomorphic 
Encryption (SHE)

Preprocessing polynomial evaluation
[Kedlaya-Umans’08]

Can only evaluate low degree functions



Basic PIR from SHE

𝑖 = (𝑖., 𝑖/, … , 𝑖0) ∈ ℤ10
DB ∈ 0,1 (

Write 𝑖 in base 𝑑 (prime), 
note 𝑚 = log2𝑁

𝑓23 ∈ ℤ1[𝑋., … , 𝑋0]

𝑓34 𝑖', … , 𝑖5 = DB[𝑖]

𝑠𝑘 ← $

∀𝑗:	𝛼4 ← 𝐸𝑛𝑐56(𝑖4)

𝛽 = 𝐸𝑣𝑎𝑙(𝑓23 , 𝛼., … , 𝛼0)

𝐷𝐵[𝑖] = 𝐷𝑒𝑐56(𝛽)

𝑓!" has individual degree < 𝑑 and total 
degree at most 𝐷 = 𝑑𝑚 = 𝑑 ⋅ log#𝑁

𝑖 ∈ [𝑁]



Preprocessing Polynomials
[Kedlaya-Umans ’08]

Lemma: Given polynomial 𝑓(𝑋', … , 𝑋5) over the ring 𝑅 = ℤ6 with 
individual degree < 𝑑 into can preprocess 𝑓 into a data structure such that:
• Can evaluate 𝑓(𝜶) for any 𝜶 ∈ ℤ65 in time poly(𝑑,𝑚, log |𝑅|)
• Preprocessing time/space: 𝑁 \ 𝑂 𝑚 log𝑁 5 \ poly(𝑑,𝑚, log 𝑅 )

→ polylog(𝑁)
→ 𝑁$%&

Recall: We want 𝑑 small for the SHE scheme

Choose parameters:
• 𝑑 = 	 log7𝑁
• 𝑚 =	 𝑙𝑜𝑔2𝑁 = ,-. /

78,-. ,-. /

• 𝑅 = 2polylog(/)

Aside: [KU’08] extends to 
polys over a larger class of 
rings including
𝑅 = ℤ6 𝑌, 𝑍 /(𝐸' 𝑌 , 𝐸9(𝑍))

𝑁 = 𝑑' = # coeff’s in 𝑓



Apply [KU08] to Basic PIR?

𝑖 = (𝑖., 𝑖/, … , 𝑖0) ∈ ℤ1
DB ∈ 0,1 (

Write 𝑖 in base 𝑑 (prime)

𝑓34 𝑖', … , 𝑖5 = DB[𝑖]

𝑠𝑘 ← $

∀𝑗:	𝛼4 ← 𝐸𝑛𝑐56(𝑖4)

𝛽 = 𝐸𝑣𝑎𝑙(𝑓23 , 𝛼., … , 𝛼0)

𝐷𝐵[𝑖] = 𝐷𝑒𝑐56(𝛽)𝑓23 ∈ ℤ1[𝑋., … , 𝑋0]

Problem: Server doesn’t directly compute 𝑓34 but 
instead SHE 𝐸𝑣𝑎𝑙
⇒ can’t preprocess server computation



Algebraic Somewhat Homomorphic Encryption (ASHE)

Plaintext space
ℤ!

Ciphertext space
A ring 𝑅

Messages 𝜇$, 𝜇( ∈ ℤ# Ciphertexts 𝛼$, 𝛼( ∈ 𝑅
𝐸𝑛𝑐

𝐷𝑒𝑐 𝛼' + 𝛼9 =	𝜇' + 𝜇9
𝐷𝑒𝑐 𝛼' \ 𝛼9 =	𝜇' \ 𝜇9

Ring operations in 𝑅 – 
No FHE 𝐸𝑣𝑎𝑙 necessary



Algebraic Somewhat Homomorphic Encryption (ASHE)

Plaintext space
ℤ!

Ciphertext space
A ring 𝑅

Messages 𝜇$, 𝜇( ∈ ℤ# Ciphertexts 𝛼$, 𝛼( ∈ 𝑅
𝐸𝑛𝑐

• Correspondence extends to polynomial evaluation:
    If 𝛼' ← 𝐸𝑛𝑐"# 𝜇' , … , 𝛼5 ← 𝐸𝑛𝑐"# 𝜇5   and 𝑓 is a poly over ℤ2 of total degree < 𝐷,
    then 𝑓 𝛼', … , 𝛼5 = 𝐸𝑛𝑐"#(𝑓 𝜇', … , 𝜇5 )  where 𝑓 is “lifted” to 𝑅.

• Complexity (bit-size of ring elements, encryption/decryption time) can be poly(𝐷). 



Algebraic Somewhat Homomorphic Encryption (ASHE)

Plaintext space
ℤ!

Ciphertext space
A ring 𝑅

Messages 𝜇$, 𝜇( ∈ ℤ# Ciphertexts 𝛼$, 𝛼( ∈ 𝑅
𝐸𝑛𝑐

• Get ASHE from minor modifications of prior SHE schemes
• From [BV11] based on RingLWE
• From [LTV12] based on security of NTRU
• From [vGHV10] based on Approximate GCD

→ Main construction



Final DEPIR Construction

𝑖 = (𝑖., 𝑖/, … , 𝑖0) ∈ ℤ1
DB ∈ 0,1 (

Write 𝑖 in base 𝑑 (prime)

𝑠𝑘 ← $

∀𝑗:	𝛼4 ← 𝐸𝑛𝑐56(𝑖4)

𝛽 = 𝐸𝑣𝑎𝑙(𝑓23 , 𝛼., … , 𝛼0)

DB[𝑖] = 𝐷𝑒𝑐56(𝛽)Lift 𝑓23 to
𝑓23 ∈ 𝑅[𝑋., … , 𝑋0]

Preprocess with [KU08]



From DEPIR to RAM-FHE

Efficiency: For any 𝜖 > 0:
- Preprocessing time:  𝑂 𝑦 '()

- Client time/communication: 𝑂 𝑥 '() + 𝑓 𝑥, 𝑦 \ polylog 𝑥 + 𝑦
- Server time: 𝑂 𝑇'() \ polylog( 𝑥 + 𝑦 )

Result: We use techniques from our DEPIR construction + (circuit) FHE to 
build RAM-FHE based on the RingLWE assumption
Ø We use the ASHE structure of our DEPIR to “glue” it together with 

a suitable circuit FHE



Conclusions

Open Questions:
• Applications? Of DEPIR/RAM-FHE themselves or of techniques
• Can we do it from plain LWE? 
• Practical efficiency?

Thank you!

We construct DEPIR and RAM-FHE from RingLWE. 



CPU
𝑥 state'

𝑖'

CPU

𝑦[𝑖']

…

#𝑦

ASHE eval

FHE evalFHE eval step circuit to get 
encryption of an index

𝑖'

Reinterpret as ASHE 
ciphertext = DEPIR query

Compute DEPIR resp 
under ASHE and convert 
back to FHE



CPU

𝑦 𝑥

ReadRead Mem

Read & Write

A RAM program 𝑃 consists of 
a CPU step circuit with
• Random read access to 𝑦 
• Random read access to 𝑥
• Random read/write access 

to Mem

𝑥

Mem

RAM Model



Simpler RAM-FHE

• Simpler Case: RAM program  𝑃 has
- read-only random-access to 𝑦
- but no random-access to 𝑥 or to read/write memory. 

CPU
𝑥 state'

𝑖'

CPU

𝑦[𝑖']

state9

𝑖9

CPU

𝑦[𝑖9]

CPU…

output



CPU
𝑥 state'

𝑖'

CPU

𝑦[𝑖']

…

Use Circuit-FHE to compute the step circuit

𝑦

Main challenge: How to access 𝑦?

DEPIR? Who makes the query?



𝑦      preprocess      #𝑦

CPU
𝑥 state'

𝑖'

CPU

𝑦[𝑖']

…

Previous work: 
DEPIR + obfuscation 
[Hamlin-Holmgren-Weiss-Wichs ’19]

𝑖' 𝑦[𝑖']

DEPIR Query

This work: RingLWE



Key Observation:  ASHE-FHE Hybrid

ASHE:  
Evaluate a low-degree 
polynomial on encrypted 
data
• Simply evaluates the 

(lifted) polynomial

FHE: 
Evaluate any circuit over 
encrypted data

• Uses non-algebraic 
operations

Based on RingLWE (or NTRU, ApproxGCD) + circular security

switch back-and-forth



Full RAM-FHE Construction

• Random-access to 𝑥 can be handled similarly to 𝑦. 
• Client first encrypts 𝑥 and then applies DEPIR preprocessing on it. 

• Random-access to read-write memory via updatable DEPIR.
• Store memory contents encrypted under ASHE-FHE in an updatable 

DEPIR data structure. 


